This research measures human performance in inferring the functional types (i.e., home, work , leisure and transport ) of locations in geo-location data using different visual representations of the data (textual, static and animated visualizations) along with different amounts of data (1, 3 or 5 day(s)). We first collected real life geo-location data from tweets. We then asked the data owners to tag their location points, resulting in ground truth data. Using this dataset we conducted an empirical study involving 45 participants to analyze how accurately they could infer the functional location of the original data owners under different conditions, i.e., three data representations, three data densities and four location types. The study results indicate that while visual techniques per- form better than textual ones, the functional locations of human activities can be inferred with a relatively high accuracy even using only textual representations and a low density of location points. Workplace was more easily inferred than home while transport was the functional location with the highest accuracy. Our results also showed that it was easier to infer functional locations from data exhibiting more stable and consistent mobility patterns, which are thus more vulnerable to privacy disclosures. We discuss the implications of our findings in the context of privacy preservation and provide guidelines to users and companies to help preserve and safeguard people’s privacy.
By Ilaria Liccardi, Alfie Abdul-Rahman, Min Chen
Download PDF
Best of CHI Honorable Mention